Pseudo-Paley graphs and skew Hadamard difference sets from presemifields
نویسندگان
چکیده
Let (K,+, ∗) be an odd order presemifield with commutative multiplication. We show that the set of nonzero squares of (K, ∗) is a skewHadamard difference set or a Paley type partial difference set in (K,+) according as q is congruent to 3modulo 4 or q is congruent to 1 modulo 4. Applying this result to the Coulter–Matthews presemifield and the Ding–Yuan variation of it, we recover a recent construction of skew Hadamard difference sets by Ding and Yuan [7]. On the other hand, applying this result to the known presemifields with commutative multiplication and having order q congruent to 1modulo 4, we construct several families of pseudo-Paley graphs. We compute the p-ranks of these pseudo-Paley graphs when q = 34, 36, 38, 310, 54, and 74. The p-rank results indicate that these graphs seem to be new. Along the way, we also disprove a conjecture of René Peeters [17, p. 47] which says that the Paley graphs Dedicated to Dan Hughes on the occasion of his 80th birthday. G. Weng (B) ·W. Qiu LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China e-mail: [email protected] Z. Wang ·Q. Xiang Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA W. Qiu e-mail: [email protected] Z. Wang e-mail: [email protected] Q. Xiang e-mail: [email protected] 50 Des. Codes Cryptogr. (2007) 44:49–62 of nonprime order are uniquely determined by their parameters and the minimality of their relevant p-ranks.
منابع مشابه
A family of skew Hadamard difference sets
In 1933 a family of skew Hadamard difference sets was described by Paley using matrix language and was called the Paley–Hadamard difference sets in the literature. During the last 70 years, no new skew Hadamard difference sets were found. It was conjectured that there are no further examples of skew Hadamard difference sets. This conjecture was proved to be true for the cyclic case in 1954, and...
متن کاملInequivalence of Skew Hadamard Difference Sets and Triple Intersection Numbers Modulo a Prime
Recently, Feng and Xiang [10] found a new construction of skew Hadamard difference sets in elementary abelian groups. In this paper, we introduce a new invariant for equivalence of skew Hadamard difference sets, namely triple intersection numbers modulo a prime, and discuss inequivalence between Feng-Xiang skew Hadamard difference sets and the Paley difference sets. As a consequence, we show th...
متن کاملPaley type partial difference sets in non p-groups
By modifying a construction for Hadamard (Menon) difference sets we construct two infinite families of negative Latin square type partial difference sets in groups of the form Z3 × Zp where p is any odd prime. One of these families has the wellknown Paley parameters, which had previously only been constructed in p-groups. This provides new constructions of Hadamard matrices and implies the exis...
متن کاملSkew Hadamard Difference Sets from Dickson Polynomials of Order 7
Skew Hadamard difference sets have been an interesting topic of study for over 70 years. For a long time, it had been conjectured the classical Paley difference sets (the set of nonzero quadratic residues in Fq where q ≡ 3 mod 4) were the only example in Abelian groups. In 2006, the first author and Yuan disproved this conjecture by showing that the image set of D5(x2, u) is a new skew Hadamard...
متن کاملConstructions of strongly regular Cayley graphs and skew Hadamard difference sets from cyclotomic classes
In this paper, we give a construction of strongly regular Cayley graphs and a construction of skew Hadamard difference sets. Both constructions are based on choosing cyclotomic classes in finite fields, and they generalize the constructions given by Feng and Xiang [10, 12]. Three infinite families of strongly regular graphs with new parameters are obtained. The main tools that we employed are i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Des. Codes Cryptography
دوره 44 شماره
صفحات -
تاریخ انتشار 2007